Previews

Contexts can optionally return previews to indicate the state inside the context.

The preview can return multiple representations of the state for any number of items needing preview.

Adding a preview to your context

Add a generate_preview() function! You can show data types or specific variables as they are with display(), or for more custom visualization logic, add more plotting and figures through whatever library you choose.

Matplotlib example:

    async def generate_preview(self):
        """
        Preview what exists in the subkernel.
        """
        # Change the code here to fit your desired preview logic.
        # Make sure to wrap it in a try/except block! 
        user_plotting_code = r'''
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

try:
    # Show the dataframe itself first to map to 'Raw Data' below
    display(context_var)          
    plt.figure(figsize=(10, 6))
    plt.plot(context_var.mean(), marker='o', linestyle='-', color='blue')
    plt.title('Mean Values Across Columns')
    plt.xlabel('Column Index')
    plt.ylabel('Mean Value')
    plt.grid(True)
    # Show the column means second
    plt.show()
except Exception as e:
    pass
'''
        # Names in order of figures to show the user in Beaker's interface, handled
        # in the logic below.
        plot_names = [
            "Raw Data",
            "Column Mean"
        ]

        #
        # Internal preview handling - collect all figures and map them to names.
        #
        result = await self.evaluate(user_plotting_code)
        plots = result.get('display_data_list', None)
        collected_plots = {
            (plot_names[i:i+1] or [i])[0]: plots[i] 
            for i in range(len(plots))
        }
        if len(plots) > 0:
            return {
                'Preview': collected_plots
            }

Vega-Altair example – plots an interactive bar chart around the variable source:

(assuming source would later be defined in the notebook in the shape of

source = {
    "values": [
        {"a": "A", "b": 28},
        {"a": "B", "b": 55},
        {"a": "C", "b": 43},
        {"a": "D", "b": 91},
        {"a": "E", "b": 81},
        {"a": "F", "b": 53},
        {"a": "G", "b": 19},
        {"a": "H", "b": 87},
        {"a": "I", "b": 52},
    ]
}

)

as per https://altair-viz.github.io/gallery/interactive_bar_select_highlight.html

    async def generate_preview(self):
        """
        Preview what exists in the subkernel.
        """
        # Change the code here to fit your desired preview logic.
        # Make sure to wrap it in a try/except block! 
        user_plotting_code = '''
try:
    import altair as alt
    
    select = alt.selection_point(name="select", on="click")
    highlight = alt.selection_point(name="highlight", on="pointerover", empty=False)
    stroke_width = (
        alt.when(select).then(alt.value(2, empty=False))
        .when(highlight).then(alt.value(1))
        .otherwise(alt.value(0))
    )
                                     
    alt.Chart(source, height=200).mark_bar(
        fill="#4C78A8", stroke="black", cursor="pointer"
    ).encode(
        x="a:O",
        y="b:Q",
        fillOpacity=alt.when(select).then(alt.value(1)).otherwise(alt.value(0.3)),
        strokeWidth=stroke_width,
    ).configure_scale(bandPaddingInner=0.2).add_params(select, highlight).show()
except Exception as e:
    pass
'''
        # Names in order of figures to show the user in Beaker's interface, handled
        # in the logic below.
        plot_names = [
            "Interactive Vega Plot"
        ]

        #
        # Internal preview handling - collect all figures and map them to names.
        #
        result = await self.evaluate(user_plotting_code)
        plots = result.get('display_data_list', None)
        collected_plots = {
            (plot_names[i:i+1] or [i])[0]: plots[i] 
            for i in range(len(plots))
        }
        if len(plots) > 0:
            return {
                'Preview': collected_plots
            }

For a good starting point, changing anything above the “Internal preview handling” section should be good enough for an arbitrary number of custom plots and dataframes!

Format of a preview payload

{
  <item_type>: {
    <item_name>: {
      <mimetype>: <any json-encodable content>
    }
  }
}

Example:

{
    "datasets": {
        "hospitals": {
            "application/json": [
                [...],
                [...],
                [...]
            ],
            "text/html": "<table><tr>...</table>",
            "text/plain": "hosp_id,hosp_name,hosp_city_id,..."

        },
        "cities": {
            "application/json": [[...],[...],[...]],
            "text/html": "<table><tr>...</table>",
            "text/plain": "id,name,state,..."
        },
        "doctors": {
            "application/json": [[...],[...],[...]],
            "text/html": "<table><tr>...</table>",
            "text/plain": "doctor_id,doctor_name,doctor_hosp_id,..."
        }
    },
    "maps": {
        "arlington_va": {
            "image/jpeg": "/9j/4AAQSkZJRg...RQB//2Q==",
            "text/plain": "Map of Arlington, VA"
        },
        "washington_dc": {
            "image/jpeg": "/9j/4AAQSkFikk...vRn//2Q==",
            "text/plain": "Map of Washington, DC"
        }
    },
    "pins": {
        "pins": {
            "application/x-doctor-location": [
                {
                    "lat": -77.0361691,
                    "lon": 38.9049533,
                    "doctor_id": 4335,
                },
                {
                    "lat": -77.0437808,
                    "lon": 38.9048841,
                    "doctor_id": 8146,
                },
                {
                    "lat": -77.0496311,
                    "lon": 38.9200379,
                    "doctor_id": 2380,
                }
            ]
        }
    }
}

Item types

This is a unique identifier for the type of item being previewed. Either displayed or used as a selection criteria as needed.

Useful for grouping like items together if more than one type of item is being previewed.

Item names

This is a unique name of the item being previewed and should be identifiable by the user. Usually this will be a variable name for a local variable type.

MIME Types

A MIME Type indicator the determines how the preview should be rendered.

You can provide your own mimetype if you also create a renderer for it.

The following MIME Types have renderers built in provide by Jupyter:

  • text/plain
  • text/html
  • text/markdown
  • image/bmp
  • image/png
  • image/jpeg
  • image/gif
  • image/webp
  • image/svg+xml
  • text/javascript
  • application/javascript
  • application/vnd.jupyter.stdout ( Custom Jupyter type )
  • application/vnd.jupyter.stderr ( Custom Jupyter type )

These MIME Types have renderers defined in the Beaker-vue library

  • text/latex
  • application/latex
  • text/json
  • application/json


Adding a new renderer